tiger_lib/context.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
//! [`ScopeContext`] tracks our knowledge of the scope types used in script and validates its consistency.
use std::borrow::Cow;
use crate::game::Game;
use crate::helpers::{stringify_choices, ActionOrEvent, TigerHashMap};
use crate::report::{err, warn, ErrorKey, ReportBuilderStage3};
use crate::scopes::Scopes;
use crate::token::Token;
/// When reporting an unknown scope, list alternative scope names if there are not more than this.
const MAX_SCOPE_NAME_LIST: usize = 6;
/// The `ScopeContext` represents what we know about the scopes leading to the `Block`
/// currently being validated.
#[derive(Clone, Debug)]
pub struct ScopeContext {
/// `prev` is a chain of all the known previous scopes.
prev: Option<Box<ScopeHistory>>,
/// Normally, `this` starts as a `ScopeEntry::Rootref`, but there are cases where the
/// relationship to root is not known.
this: ScopeEntry,
/// root is always a `ScopeEntry::Scope`
root: ScopeEntry,
/// Names of named scopes; the values are indices into the `named` vector.
/// Names should only be added, never removed, and indices should stay consistent.
/// This is because the indices are also used by `ScopeEntry::Named` values throughout this `ScopeContext`.
/// `names` and `list_names` occupy separate namespaces, but index into the same `named` array.
names: TigerHashMap<String, usize>,
list_names: TigerHashMap<String, usize>,
/// Named scope values are `ScopeEntry::Scope` or `ScopeEntry::Named` or `ScopeEntry::Rootref`.
/// Invariant: there are no cycles in the array via `ScopeEntry::Named` entries.
named: Vec<ScopeEntry>,
/// Same indices as `named`, is a token iff the named scope is expected to be set on entry to the current scope context.
/// Invariant: `named` and `is_input` are the same length.
is_input: Vec<Option<Token>>,
/// Is this scope level a level in progress? `is_builder` is used when evaluating scope chains
/// like `root.liege.primary_title`. It affects the handling of `prev`, because the builder
/// scope is not a real scope level yet.
is_builder: bool,
/// Was this `ScopeContext` created as an unrooted context? Unrooted means we do not know
/// whether `this` and `root` are the same at the start. Unrooted scopes start with an extra
/// `prev` level, so they need to be cleaned up differently.
is_unrooted: bool,
/// Is this scope context one where all the named scopes are (or should be) known in advance?
/// If `strict_scopes` is false, then the `ScopeContext` will assume any name might be a valid
/// scope name that we just don't know about yet.
strict_scopes: bool,
/// A special flag for scope contexts that are known to be wrong. It's used for the
/// `scope_override` config file feature. If `no_warn` is set then this `ScopeContext` will not
/// emit any reports.
no_warn: bool,
/// A token indicating where this context was created and its named scopes were initialized.
source: Token,
/// A history of the actions and events that were triggered on the way from `source` to the
/// current context.
traceback: Vec<ActionOrEvent>,
}
#[derive(Clone, Debug)]
/// One previous scope level in a chain of previous scopes.
///
/// Used for handling `prev`, and also used when closing a scope: the most recent
/// `ScopeHistory` in the chain gets popped back as the current scope.
struct ScopeHistory {
prev: Option<Box<ScopeHistory>>,
this: ScopeEntry,
}
#[derive(Clone, Debug)]
/// `ScopeEntry` is a description of what we know of a scope's type and its connection to other
/// scopes.
///
/// It is used both to look up a scope's type, and to propagate knowledge about that type backward
/// to the scope's source. For example if `this` is a Rootref, and we find out that `this` is a
/// `Character`, then `root` must be a `Character` too.
enum ScopeEntry {
/// Backref is for when the current scope is made with `prev` or `this`.
/// It counts as a scope in the chain, for purposes of `prev` and such, but any updates
/// to it (such as narrowing of scope types) need to be propagated back to the
/// real origin of that scope.
///
/// The backref number is 0 for 'this', 1 for 'prev'
Backref(usize),
/// A Rootref is for when the current scope is made with `root`. Most of the time,
/// we also start with `this` being a Rootref.
Rootref,
/// `Token` is the token that's the reason why we think the `Scopes` value is what it is.
/// It's usually the token that was the cause of the latest narrowing.
Scope(Scopes, Reason),
/// The current scope takes its value from a named scope. The `usize` is an index into the `ScopeContext::named` vector.
Named(usize, Reason),
}
/// This enum records the reason why we think a certain scope has the type it does.
/// It is used for error reporting.
///
/// TODO: make a `ReasonRef` that contains an `&Token`, and a `Borrow` impl for it.
/// This will avoid some cloning.
#[derive(Clone, Debug)]
pub enum Reason {
/// The reason can be explained by pointing at some token
Token(Token),
/// The scope type was deduced from a named scope's name; the `Token` points at that name in
/// the script.
Name(Token),
/// The scope was supplied by the game engine. The `Token` points at a key explaining this, for
/// example the key of an `Item` or the field key of a trigger or effect in an item.
Builtin(Token),
}
impl Reason {
pub fn token(&self) -> &Token {
match self {
Reason::Token(t) | Reason::Name(t) | Reason::Builtin(t) => t,
}
}
// TODO: change this to Display ?
pub fn msg(&self) -> Cow<str> {
match self {
Reason::Token(t) => Cow::Owned(format!("deduced from `{t}` here")),
Reason::Name(_) => Cow::Borrowed("deduced from the scope's name"),
Reason::Builtin(_) => Cow::Borrowed("supplied by the game engine"),
}
}
}
impl ScopeEntry {
fn deduce<T: Into<Token>>(token: T) -> ScopeEntry {
let token = token.into();
if let Some(scopes) = scope_type_from_name(token.as_str()) {
ScopeEntry::Scope(scopes, Reason::Name(token))
} else {
ScopeEntry::Scope(Scopes::all(), Reason::Token(token))
}
}
}
impl ScopeContext {
/// Make a new `ScopeContext`, with `this` and `root` the same, and `root` of the given scope
/// types. `token` is used when reporting errors about the use of `root`.
pub fn new<T: Into<Token>>(root: Scopes, token: T) -> Self {
let token = token.into();
ScopeContext {
prev: None,
this: ScopeEntry::Rootref,
root: ScopeEntry::Scope(root, Reason::Builtin(token.clone())),
names: TigerHashMap::default(),
list_names: TigerHashMap::default(),
named: Vec::new(),
is_input: Vec::new(),
is_builder: false,
is_unrooted: false,
strict_scopes: true,
no_warn: false,
source: token,
traceback: Vec::new(),
}
}
/// Make a new `ScopeContext`, with `this` and `root` unconnected, and `this` of the given scope
/// types. `token` is used when reporting errors about the use of `this`, `root`, or `prev`.
///
/// This function is useful for the scope contexts created for scripted effects, scripted
/// triggers, and script values. In those, it's not known what the caller's `root` is.
pub fn new_unrooted<T: Into<Token>>(this: Scopes, token: T) -> Self {
let token = token.into();
ScopeContext {
prev: Some(Box::new(ScopeHistory {
prev: None,
this: ScopeEntry::Scope(Scopes::all(), Reason::Token(token.clone())),
})),
this: ScopeEntry::Scope(this, Reason::Token(token.clone())),
root: ScopeEntry::Scope(Scopes::all(), Reason::Token(token.clone())),
names: TigerHashMap::default(),
list_names: TigerHashMap::default(),
named: Vec::new(),
is_input: Vec::new(),
is_builder: false,
is_unrooted: true,
strict_scopes: true,
no_warn: false,
source: token,
traceback: Vec::new(),
}
}
/// Declare whether all the named scopes in this scope context are known. Default is true.
///
/// Set this to false in for example events, which start with the scopes defined by their
/// triggering context.
///
/// Having strict scopes set to true makes the `ScopeContext` emit errors when encountering
/// unknown scope names.
pub fn set_strict_scopes(&mut self, strict: bool) {
self.strict_scopes = strict;
}
/// Return whether this `ScopeContext` has strict scopes set to true.
/// See [`Self::set_strict_scopes`].
pub fn is_strict(&self) -> bool {
self.strict_scopes
}
/// Set whether this `ScopeContext` should emit reports at all. `no_warn` defaults to false.
///
/// It's used for scope contexts that are known to be wrong, related to the `scope_override` config file feature.
pub fn set_no_warn(&mut self, no_warn: bool) {
self.no_warn = no_warn;
}
/// Change this context's `source` value to something more appropriate than the default (which
/// is the token passed to `new`).
pub fn set_source<T: Into<Token>>(&mut self, source: T) {
self.source = source.into();
}
/// Helper function for `root_for_event` and `root_for_action`.
fn root_for(&self, trace: ActionOrEvent) -> Option<Self> {
if !self.strict_scopes || self.no_warn || self.traceback.contains(&trace) {
return None;
}
let mut new_sc = self.clone();
for named in &mut new_sc.named {
if matches!(named, ScopeEntry::Rootref) {
*named = new_sc.root.clone();
}
}
let (scopes, reason) = new_sc.scopes_reason();
new_sc.root = ScopeEntry::Scope(scopes, reason.clone());
new_sc.this = ScopeEntry::Rootref;
new_sc.prev = None;
new_sc.is_unrooted = false;
new_sc.traceback.push(trace);
Some(new_sc)
}
/// Create a `ScopeContext` to use for a triggered event, if validating the event with this
/// scope context is useful.
pub fn root_for_event<T: Into<Token>>(&self, event_id: T) -> Option<Self> {
self.root_for(ActionOrEvent::new_event(event_id.into()))
}
/// Create a `ScopeContext` to use for a triggered action, if validating the action with this
/// scope context is useful.
pub fn root_for_action<T: Into<Token>>(&self, action: T) -> Option<Self> {
let action = action.into();
if self.source == action {
return None;
}
self.root_for(ActionOrEvent::new_action(action))
}
/// Change the scope type and related token of `root` for this `ScopeContext`.
///
/// This function is mainly used in the setup of a `ScopeContext` before using it.
/// It's a bit of a hack and shouldn't be used.
/// TODO: get rid of this.
#[cfg(feature = "ck3")] // happens not to be used by vic3
pub fn change_root<T: Into<Token>>(&mut self, root: Scopes, token: T) {
self.root = ScopeEntry::Scope(root, Reason::Builtin(token.into()));
}
#[doc(hidden)]
fn define_name_internal(&mut self, name: &str, scopes: Scopes, reason: Reason) {
if let Some(&idx) = self.names.get(name) {
self.break_chains_to(idx);
self.named[idx] = ScopeEntry::Scope(scopes, reason);
} else {
self.names.insert(name.to_string(), self.named.len());
self.named.push(ScopeEntry::Scope(scopes, reason));
self.is_input.push(None);
}
}
/// Declare that this `ScopeContext` contains a named scope of the given name and type,
/// supplied by the game engine.
///
/// The associated `token` will be used in error reports related to this named scope.
pub fn define_name<T: Into<Token>>(&mut self, name: &str, scopes: Scopes, token: T) {
self.define_name_internal(name, scopes, Reason::Builtin(token.into()));
}
/// Declare that this `ScopeContext` contains a named scope of the given name and type,
/// *not* supplied by the game engine but deduced from script.
///
/// The associated `token` will be used in error reports related to this named scope.
/// The token should reflect why we think the named scope has the scope type it has.
pub fn define_name_token<T: Into<Token>>(&mut self, name: &str, scopes: Scopes, token: T) {
self.define_name_internal(name, scopes, Reason::Token(token.into()));
}
/// Look up a named scope and return its scope types if it's known.
///
/// Callers should probably check [`Self::is_strict()`] as well.
pub fn is_name_defined(&mut self, name: &str) -> Option<Scopes> {
if let Some(&idx) = self.names.get(name) {
#[allow(clippy::match_on_vec_items)] // invariant guarantees no panic
Some(match self.named[idx] {
ScopeEntry::Scope(s, _) => s,
ScopeEntry::Backref(_) => unreachable!(),
ScopeEntry::Rootref => self.resolve_root().0,
ScopeEntry::Named(idx, _) => self.resolve_named(idx).0,
})
} else {
None
}
}
/// This is called when the script does `exists = scope:name`.
///
/// It records `name` as "known", but with no scope type information, and records that the
/// caller is expected to provide this scope.
///
/// The `ScopeContext` is not smart enough to track optionally existing scopes. It assumes
/// that if you do `exists` on a scope, then from that point on it exists. Improving this would
/// be a big project.
pub fn exists_scope<T: Into<Token>>(&mut self, name: &str, token: T) {
if !self.names.contains_key(name) {
let idx = self.named.len();
self.names.insert(name.to_string(), idx);
self.named.push(ScopeEntry::deduce(token));
self.is_input.push(None);
}
}
#[doc(hidden)]
fn define_list_internal(&mut self, name: &str, scopes: Scopes, reason: Reason) {
if let Some(&idx) = self.list_names.get(name) {
self.break_chains_to(idx);
self.named[idx] = ScopeEntry::Scope(scopes, reason);
} else {
self.list_names.insert(name.to_string(), self.named.len());
self.named.push(ScopeEntry::Scope(scopes, reason));
self.is_input.push(None);
}
}
/// Declare that this `ScopeContext` contains a list of the given name and type,
/// supplied by the game engine.
///
/// The associated `token` will be used in error reports related to this list.
///
/// Lists and named scopes exist in different namespaces, but under the hood
/// `ScopeContext` treats them the same. This means that lists are expected to
/// contain items of a single scope type, which sometimes leads to false positives.
pub fn define_list<T: Into<Token>>(&mut self, name: &str, scopes: Scopes, token: T) {
self.define_list_internal(name, scopes, Reason::Builtin(token.into()));
}
/// This is like [`Self::define_name()`], but `scope:name` is declared equal to the current `this`.
pub fn save_current_scope(&mut self, name: &str) {
if let Some(&idx) = self.names.get(name) {
self.break_chains_to(idx);
let entry = self.resolve_backrefs();
// Guard against `scope:foo = { save_scope_as = foo }`
if let ScopeEntry::Named(i, _) = entry {
if *i == idx {
// Leave the scope as its original value
return;
}
}
self.named[idx] = entry.clone();
} else {
self.names.insert(name.to_string(), self.named.len());
self.named.push(self.resolve_backrefs().clone());
self.is_input.push(None);
}
}
/// If list `name` exists, narrow its scope type down to `this`, otherwise define it
/// as having the same scope type as `this`.
// TODO: I don't think this is doing the right thing for most callers.
pub fn define_or_expect_list(&mut self, name: &Token) {
if let Some(&idx) = self.list_names.get(name.as_str()) {
let (s, reason) = self.resolve_named(idx);
let reason = reason.clone(); // TODO: remove need to clone
self.expect(s, &reason);
// It often happens that an iterator does is_in_list before add_to_list,
// and in those cases we want the add_to_list to take precedence: conclude that the
// list is being built here, and isn't an input list.
self.is_input[idx] = None;
} else {
self.list_names.insert(name.to_string(), self.named.len());
self.named.push(self.resolve_backrefs().clone());
self.is_input.push(None);
}
}
/// Expect list `name` to be known and (with strict scopes) warn if it isn't.
/// Narrow the type of `this` down to the list's type.
pub fn expect_list(&mut self, name: &Token) {
if let Some(&idx) = self.list_names.get(name.as_str()) {
let (s, reason) = self.resolve_named(idx);
let reason = reason.clone(); // TODO: remove need to clone
self.expect3(s, &reason, name);
} else if self.strict_scopes {
let msg = "unknown list";
err(ErrorKey::UnknownList).weak().msg(msg).loc(name).push();
}
}
/// Cut `idx` out of any [`ScopeEntry::Named`] chains. This avoids infinite loops.
#[doc(hidden)]
fn break_chains_to(&mut self, idx: usize) {
for i in 0..self.named.len() {
if i == idx {
continue;
}
if let ScopeEntry::Named(ni, _) = self.named[i] {
if ni == idx {
self.named[i] = self.named[idx].clone();
}
}
}
}
/// Open a new scope level of `scopes` scope type. Record `token` as the reason for this type.
///
/// This is mostly used by iterators.
/// `prev` will refer to the previous scope level.
pub fn open_scope(&mut self, scopes: Scopes, token: Token) {
self.prev =
Some(Box::new(ScopeHistory { prev: self.prev.take(), this: self.this.clone() }));
self.this = ScopeEntry::Scope(scopes, Reason::Token(token));
}
/// Open a new, temporary scope level. Initially it will have its `this` the same as the
/// previous level's `this`.
///
/// The purpose is to handle scope chains like `root.liege.primary_title`. Call the `replace_`
/// functions to update the value of `this`, and at the end either confirm the new scope level
/// with [`Self::finalize_builder()`] or discard it with [`Self::close()`].
pub fn open_builder(&mut self) {
self.prev =
Some(Box::new(ScopeHistory { prev: self.prev.take(), this: self.this.clone() }));
self.this = ScopeEntry::Backref(0);
self.is_builder = true;
}
/// Declare that the temporary scope level opened with [`Self::open_builder()`] is a real scope level.
pub fn finalize_builder(&mut self) {
self.is_builder = false;
}
/// Exit a scope level and return to the previous level.
pub fn close(&mut self) {
let mut prev = self.prev.take().unwrap();
self.this = prev.this.clone();
self.prev = prev.prev.take();
self.is_builder = false;
}
/// Replace the `this` in a temporary scope level with the given `scopes` type and record
/// `token` as the reason for this type.
///
/// This is used when a scope chain starts with something absolute like `faith:catholic`.
pub fn replace(&mut self, scopes: Scopes, token: Token) {
self.this = ScopeEntry::Scope(scopes, Reason::Token(token));
}
/// Replace the `this` in a temporary scope level with a reference to `root`.
pub fn replace_root(&mut self) {
self.this = ScopeEntry::Rootref;
}
/// Replace the `this` in a temporary scope level with a reference to the previous scope level.
pub fn replace_prev(&mut self) {
if Game::is_imperator() {
// Allow `prev.prev` for imperator.
match self.this {
ScopeEntry::Backref(r) => self.this = ScopeEntry::Backref(r + 1),
_ => self.this = ScopeEntry::Backref(1),
}
} else {
self.this = ScopeEntry::Backref(1);
}
}
/// Replace the `this` in a temporary scope level with a reference to the real level below it.
///
/// This is usually a no-op, used when scope chains start with `this`. If a scope chain has
/// `this` in the middle of the chain (which itself will trigger a warning) then it resets the
/// temporary scope level to the way it started.
pub fn replace_this(&mut self) {
self.this = ScopeEntry::Backref(0);
}
/// Replace the `this` in a temporary scope level with a reference to the named scope `name`.
///
/// This is used when a scope chain starts with `scope:name`. The `token` is expected to be the
/// `scope:name` token.
pub fn replace_named_scope(&mut self, name: &str, token: Token) {
self.this = ScopeEntry::Named(self.named_index(name, &token), Reason::Token(token));
}
/// Replace the `this` in a temporary scope level with a reference to the scope type of the
/// list `name`.
///
/// This is used in list iterators. The `token` is expected to be the token for the name of the
/// list.
pub fn replace_list_entry(&mut self, name: &str, token: &Token) {
self.this =
ScopeEntry::Named(self.named_list_index(name, token), Reason::Token(token.clone()));
}
/// Get the internal index of named scope `name`, either its existing index or a newly created
/// one.
///
/// If a new index has to be created, and `strict_scopes` is on, then a warning will be emitted.
#[doc(hidden)]
fn named_index(&mut self, name: &str, token: &Token) -> usize {
if let Some(&idx) = self.names.get(name) {
idx
} else {
let idx = self.named.len();
self.named.push(ScopeEntry::deduce(token));
if self.strict_scopes {
if !self.no_warn {
let msg = format!("scope:{name} might not be available here");
let mut builder = err(ErrorKey::StrictScopes).weak().msg(msg);
if self.names.len() <= MAX_SCOPE_NAME_LIST && !self.names.is_empty() {
let mut names: Vec<_> = self.names.keys().map(String::as_str).collect();
names.sort_unstable();
let info = format!("available names are {}", stringify_choices(&names));
builder = builder.info(info);
}
self.log_traceback(builder.loc(token)).push();
}
// Don't treat it as an input scope, because we already warned about it
self.is_input.push(None);
} else {
self.is_input.push(Some(token.clone()));
}
// do this after the warnings above, so that it's not listed as available
self.names.insert(name.to_string(), idx);
idx
}
}
/// Same as [`Self::named_index()`], but for lists. No warning is emitted if a new list is created.
#[doc(hidden)]
fn named_list_index(&mut self, name: &str, token: &Token) -> usize {
if let Some(&idx) = self.list_names.get(name) {
idx
} else {
let idx = self.named.len();
self.list_names.insert(name.to_string(), idx);
self.named.push(ScopeEntry::Scope(Scopes::all(), Reason::Token(token.clone())));
self.is_input.push(Some(token.clone()));
idx
}
}
/// Return true iff it's possible that `this` is the same type as one of the `scopes` types.
pub fn can_be(&self, scopes: Scopes) -> bool {
self.scopes().intersects(scopes)
}
/// Return true iff `this` is known to be one of the types of `scopes`
pub fn must_be(&self, scopes: Scopes) -> bool {
scopes.contains(self.scopes())
}
/// Return the possible scope types of this scope level.
// TODO: maybe specialize this function for performance?
pub fn scopes(&self) -> Scopes {
self.scopes_reason().0
}
/// Return the possible scope types of `root`, and the reason why we think it has those types
#[doc(hidden)]
fn resolve_root(&self) -> (Scopes, &Reason) {
match self.root {
ScopeEntry::Scope(s, ref reason) => (s, reason),
_ => unreachable!(),
}
}
/// Return the possible scope types of a named scope or list, and the reason why we think it
/// has those types.
///
/// The `idx` must be an index from the `names` or `list_names` vectors.
#[doc(hidden)]
fn resolve_named(&self, idx: usize) -> (Scopes, &Reason) {
#[allow(clippy::match_on_vec_items)]
match self.named[idx] {
ScopeEntry::Scope(s, ref reason) => (s, reason),
ScopeEntry::Rootref => self.resolve_root(),
ScopeEntry::Named(idx, _) => self.resolve_named(idx),
ScopeEntry::Backref(_) => unreachable!(),
}
}
/// Search through the scope levels to find out what `this` actually refers to.
///
/// The returned `ScopeEntry` will not be a `ScopeEntry::Backref`.
#[doc(hidden)]
fn resolve_backrefs(&self) -> &ScopeEntry {
match self.this {
ScopeEntry::Backref(r) => self.resolve_backrefs_inner(r),
_ => &self.this,
}
}
#[doc(hidden)]
fn resolve_backrefs_inner(&self, mut back: usize) -> &ScopeEntry {
let mut ptr = &self.prev;
loop {
if let Some(entry) = ptr {
if back == 0 {
match entry.this {
ScopeEntry::Backref(r) => back = r + 1,
_ => return &entry.this,
}
}
ptr = &entry.prev;
back -= 1;
} else {
// We went further back up the scope chain than we know about.
// TODO: do something sensible here
return &self.root;
}
}
}
/// Return the possible scope types for the current scope layer, together with the reason why
/// we think that.
pub fn scopes_reason(&self) -> (Scopes, &Reason) {
match self.this {
ScopeEntry::Scope(s, ref reason) => (s, reason),
ScopeEntry::Backref(r) => self.scopes_reason_internal(r),
ScopeEntry::Rootref => self.resolve_root(),
ScopeEntry::Named(idx, _) => self.resolve_named(idx),
}
}
#[doc(hidden)]
fn scopes_reason_internal(&self, mut back: usize) -> (Scopes, &Reason) {
let mut ptr = &self.prev;
loop {
if let Some(entry) = ptr {
if back == 0 {
match entry.this {
ScopeEntry::Scope(s, ref reason) => return (s, reason),
ScopeEntry::Backref(r) => back = r + 1,
ScopeEntry::Rootref => return self.resolve_root(),
ScopeEntry::Named(idx, _) => return self.resolve_named(idx),
}
}
ptr = &entry.prev;
back -= 1;
} else {
// We went further back up the scope chain than we know about.
// Currently we just bail, and return an "any scope" value with
// an arbitrary token.
match self.root {
ScopeEntry::Scope(_, ref reason) => return (Scopes::all(), reason),
_ => unreachable!(),
}
}
}
}
/// Add messages to a report that describe where this `ScopeContext` came from.
pub fn log_traceback(&self, mut builder: ReportBuilderStage3) -> ReportBuilderStage3 {
for elem in self.traceback.iter().rev() {
builder = builder.loc_msg(elem.token(), "triggered from here");
}
builder.loc_msg(&self.source, "scopes initialized here")
}
#[doc(hidden)]
fn expect_check(e: &mut ScopeEntry, scopes: Scopes, reason: &Reason) {
match e {
ScopeEntry::Scope(ref mut s, ref mut r) => {
if s.intersects(scopes) {
// if s is narrowed by the scopes info, remember why
if (*s & scopes) != *s {
*s &= scopes;
*r = reason.clone();
}
} else {
let token = reason.token();
let msg = format!("`{token}` is for {scopes} but scope seems to be {s}");
let msg2 = format!("scope was {}", r.msg());
warn(ErrorKey::Scopes).msg(msg).loc(token).loc_msg(r.token(), msg2).push();
}
}
_ => unreachable!(),
}
}
#[doc(hidden)]
fn expect_check3(
e: &mut ScopeEntry,
scopes: Scopes,
reason: &Reason,
key: &Token,
report: &str,
) {
match e {
ScopeEntry::Scope(ref mut s, ref mut r) => {
if s.intersects(scopes) {
// if s is narrowed by the scopes info, remember its token
if (*s & scopes) != *s {
*s &= scopes;
*r = reason.clone();
}
} else {
let msg = format!(
"`{key}` expects {report} to be {scopes} but {report} seems to be {s}"
);
let msg2 = format!("expected {report} was {}", reason.msg());
let msg3 = format!("actual {report} was {}", r.msg());
warn(ErrorKey::Scopes)
.msg(msg)
.loc(key)
.loc_msg(reason.token(), msg2)
.loc_msg(r.token(), msg3)
.push();
}
}
_ => unreachable!(),
}
}
// TODO: find a way to report the chain of Named tokens to the user
#[doc(hidden)]
fn expect_named(&mut self, mut idx: usize, scopes: Scopes, reason: &Reason) {
loop {
#[allow(clippy::match_on_vec_items)]
match self.named[idx] {
ScopeEntry::Scope(_, _) => {
Self::expect_check(&mut self.named[idx], scopes, reason);
return;
}
ScopeEntry::Rootref => {
Self::expect_check(&mut self.root, scopes, reason);
return;
}
ScopeEntry::Named(i, _) => idx = i,
ScopeEntry::Backref(_) => unreachable!(),
}
}
}
#[doc(hidden)]
fn expect_named3(
&mut self,
mut idx: usize,
scopes: Scopes,
reason: &Reason,
key: &Token,
report: &str,
) {
loop {
#[allow(clippy::match_on_vec_items)]
match self.named[idx] {
ScopeEntry::Scope(_, _) => {
Self::expect_check3(&mut self.named[idx], scopes, reason, key, report);
return;
}
ScopeEntry::Rootref => {
Self::expect_check3(&mut self.root, scopes, reason, key, report);
return;
}
ScopeEntry::Named(i, _) => idx = i,
ScopeEntry::Backref(_) => unreachable!(),
}
}
}
#[doc(hidden)]
fn expect_internal(&mut self, scopes: Scopes, reason: &Reason, mut back: usize) {
// go N steps back and check/modify that scope. If the scope is itself
// a back reference, go that much further back.
let mut ptr = &mut self.prev;
loop {
if let Some(ref mut entry) = *ptr {
if back == 0 {
match entry.this {
ScopeEntry::Scope(_, _) => {
Self::expect_check(&mut entry.this, scopes, reason);
return;
}
ScopeEntry::Backref(r) => back = r + 1,
ScopeEntry::Rootref => {
Self::expect_check(&mut self.root, scopes, reason);
return;
}
ScopeEntry::Named(idx, _) => {
self.expect_named(idx, scopes, reason);
return;
}
}
}
ptr = &mut entry.prev;
back -= 1;
} else {
// TODO: warning of some kind?
return;
}
}
}
#[doc(hidden)]
fn expect3_internal(
&mut self,
scopes: Scopes,
reason: &Reason,
mut back: usize,
key: &Token,
report: &str,
) {
// go N steps back and check/modify that scope. If the scope is itself
// a back reference, go that much further back.
let mut ptr = &mut self.prev;
loop {
if let Some(ref mut entry) = *ptr {
if back == 0 {
match entry.this {
ScopeEntry::Scope(_, _) => {
Self::expect_check3(&mut entry.this, scopes, reason, key, report);
return;
}
ScopeEntry::Backref(r) => back = r + 1,
ScopeEntry::Rootref => {
Self::expect_check3(&mut self.root, scopes, reason, key, report);
return;
}
ScopeEntry::Named(idx, ref _t) => {
self.expect_named3(idx, scopes, reason, key, report);
return;
}
}
}
ptr = &mut entry.prev;
back -= 1;
} else {
// TODO: warning of some kind?
return;
}
}
}
/// Record that the `this` in the current scope level is one of the scope types `scopes`, and
/// if this is new information, record `token` as the reason we think that.
/// Emit an error if what we already know about `this` is incompatible with `scopes`.
pub fn expect(&mut self, scopes: Scopes, reason: &Reason) {
// The None scope is special, it means the scope isn't used or inspected
if self.no_warn || scopes == Scopes::None {
return;
}
match self.this {
ScopeEntry::Scope(_, _) => Self::expect_check(&mut self.this, scopes, reason),
ScopeEntry::Backref(r) => self.expect_internal(scopes, reason, r),
ScopeEntry::Rootref => Self::expect_check(&mut self.root, scopes, reason),
ScopeEntry::Named(idx, ref _t) => self.expect_named(idx, scopes, reason),
}
}
/// Like [`Self::expect()`], but the error emitted will be located at token `key`.
///
/// This function is used when the expectation of scope compatibility comes from `key`, for
/// example when matching up a caller's scope context with a scripted effect's scope context.
fn expect3(&mut self, scopes: Scopes, reason: &Reason, key: &Token) {
// The None scope is special, it means the scope isn't used or inspected
if scopes == Scopes::None {
return;
}
match self.this {
ScopeEntry::Scope(_, _) => {
Self::expect_check3(&mut self.this, scopes, reason, key, "scope");
}
ScopeEntry::Backref(r) => self.expect3_internal(scopes, reason, r, key, "scope"),
ScopeEntry::Rootref => {
Self::expect_check3(&mut self.root, scopes, reason, key, "scope");
}
ScopeEntry::Named(idx, ref _t) => {
self.expect_named3(idx, scopes, reason, key, "scope");
}
}
}
/// Compare this scope context to `other`, with `key` as the token that identifies `other`.
///
/// This function examines the `root`, `this`, `prev`, and named scopes of the two scope
/// contexts and warns about any contradictions it finds.
///
/// It expects `self` to be the caller and `other` to be the callee.
pub fn expect_compatibility(&mut self, other: &ScopeContext, key: &Token) {
if self.no_warn {
return;
}
// Compare restrictions on `root`
match other.root {
ScopeEntry::Scope(scopes, ref token) => {
Self::expect_check3(&mut self.root, scopes, token, key, "root");
}
_ => unreachable!(),
}
// Compare restrictions on `this`
let (scopes, reason) = other.scopes_reason();
self.expect3(scopes, reason, key);
// Compare restrictions on `prev`
// In practice, we don't need to go further than one `prev` back, because of how expect_compatibility is used.
let (scopes, reason) = other.scopes_reason_internal(0);
self.expect3_internal(scopes, reason, usize::from(self.is_builder), key, "prev");
// Compare restrictions on named scopes
for (name, &oidx) in &other.names {
if self.names.contains_key(name) {
let (s, reason) = other.resolve_named(oidx);
if other.is_input[oidx].is_some() {
let idx = self.named_index(name, key);
let report = format!("scope:{name}");
self.expect_named3(idx, s, reason, key, &report);
} else {
// Their scopes now become our scopes.
self.define_name_internal(name, s, reason.clone());
}
} else if self.strict_scopes && other.is_input[oidx].is_some() {
let token = other.is_input[oidx].as_ref().unwrap();
let msg = format!("`{key}` expects scope:{name} to be set");
let msg2 = "here";
self.log_traceback(
warn(ErrorKey::StrictScopes).msg(msg).loc(key).loc_msg(token, msg2),
)
.push();
} else {
// Their scopes now become our scopes.
let (s, reason) = other.resolve_named(oidx);
self.names.insert(name.to_string(), self.named.len());
self.named.push(ScopeEntry::Scope(s, reason.clone()));
self.is_input.push(other.is_input[oidx].clone());
}
}
// Compare restrictions on lists
for (name, &oidx) in &other.list_names {
if self.list_names.contains_key(name) {
let (s, reason) = other.resolve_named(oidx);
if other.is_input[oidx].is_some() {
let idx = self.named_list_index(name, key);
let report = format!("list {name}");
self.expect_named3(idx, s, reason, key, &report);
} else {
// Their lists now become our lists.
self.define_list_internal(name, s, reason.clone());
}
} else if self.strict_scopes && other.is_input[oidx].is_some() {
let token = other.is_input[oidx].as_ref().unwrap();
let msg = format!("`{key}` expects list {name} to exist");
let msg2 = "here";
self.log_traceback(
warn(ErrorKey::StrictScopes).msg(msg).loc(key).loc_msg(token, msg2),
)
.push();
} else {
// Their lists now become our lists.
let (s, reason) = other.resolve_named(oidx);
self.list_names.insert(name.to_string(), self.named.len());
self.named.push(ScopeEntry::Scope(s, reason.clone()));
self.is_input.push(other.is_input[oidx].clone());
}
}
}
/// Safely destroy a `ScopeContext` without fully unwinding its stack.
/// This is useful when a `ScopeContext` needed to be cloned for some reason.
#[allow(dead_code)]
pub(crate) fn destroy(mut self) {
self.is_unrooted = false;
self.prev = None;
}
}
impl Drop for ScopeContext {
/// This `drop` function checks that every opened scope level was also closed.
fn drop(&mut self) {
if self.is_unrooted {
assert!(
self.prev.take().unwrap().prev.is_none(),
"unrooted scope chain not properly unwound"
);
} else {
assert!(self.prev.is_none(), "scope chain not properly unwound");
}
}
}
/// Deduce a scope type from a scope's name. This leads to better error messages.
///
/// It should be limited to names that are so obvious that it's extremely unlikely that anyone
/// would use them for a different type.
fn scope_type_from_name(mut name: &str) -> Option<Scopes> {
if let Some(real_name) = name.strip_prefix("scope:") {
name = real_name;
} else {
return None;
}
#[cfg(feature = "ck3")]
if Game::is_ck3() {
return match name {
"accolade" => Some(Scopes::Accolade),
"accolade_type" => Some(Scopes::AccoladeType),
"activity" => Some(Scopes::Activity),
"actor"
| "recipient"
| "secondary_actor"
| "secondary_recipient"
| "mother"
| "father"
| "real_father"
| "child"
| "councillor"
| "liege"
| "courtier"
| "guest"
| "host" => Some(Scopes::Character),
"army" => Some(Scopes::Army),
"artifact" => Some(Scopes::Artifact),
"barony" | "county" | "title" | "landed_title" => Some(Scopes::LandedTitle),
"combat_side" => Some(Scopes::CombatSide),
"council_task" => Some(Scopes::CouncilTask),
"culture" => Some(Scopes::Culture),
"faction" => Some(Scopes::Faction),
"faith" => Some(Scopes::Faith),
"province" => Some(Scopes::Province),
"scheme" => Some(Scopes::Scheme),
"struggle" => Some(Scopes::Struggle),
"story" => Some(Scopes::StoryCycle),
"travel_plan" => Some(Scopes::TravelPlan),
"war" => Some(Scopes::War),
_ => None,
};
}
#[cfg(feature = "vic3")]
if Game::is_vic3() {
// Due to differences in state vs state_region, law vs law_type, etc, less can be deduced
// with certainty for vic3.
return match name {
"admiral" | "general" | "character" => Some(Scopes::Character),
"actor" | "country" | "enemy_country" | "initiator" | "target_country" => {
Some(Scopes::Country)
}
"battle" => Some(Scopes::Battle),
"interest_group" => Some(Scopes::InterestGroup),
"journal_entry" => Some(Scopes::JournalEntry),
"market" => Some(Scopes::Market),
_ => None,
};
}
#[cfg(feature = "imperator")]
if Game::is_imperator() {
return match name {
"party" | "character_party" => Some(Scopes::Party),
"employer" | "party_country" | "country" | "overlord" | "unit_owner"
| "attacker_warleader" | "defender_warleader" | "former_overlord"
| "target_subject" | "future_overlord" | "old_country" | "controller" | "owner"
| "family_country" | "losing_side" | "home_country" => Some(Scopes::Country),
"fam" | "family" => Some(Scopes::Family),
"preferred_heir" | "deified_ruler" | "personal_loyalty" | "character"
| "siege_controller" | "party_leader" | "next_in_family" | "ruler" | "governor"
| "governor_or_ruler" | "commander" | "former_ruler" | "newborn" | "spouse"
| "job_holder" | "consort" | "current_heir" | "current_ruler" | "primary_heir"
| "secondary_heir" | "current_co_ruler" | "head_of_family" | "holding_owner"
| "char" | "mother" | "father" => Some(Scopes::Character),
"job" => Some(Scopes::Job),
"legion" => Some(Scopes::Legion),
"dominant_province_religion" | "religion" => Some(Scopes::Religion),
"area" => Some(Scopes::Area),
"region" => Some(Scopes::Region),
"governorship" => Some(Scopes::Governorship),
"country_culture" => Some(Scopes::CountryCulture),
"location"
| "unit_destination"
| "unit_objective_destination"
| "unit_location"
| "unit_next_location"
| "capital_scope"
| "holy_site" => Some(Scopes::Province),
"dominant_province_culture_group" | "culture_group" => Some(Scopes::CultureGroup),
"dominant_province_culture" | "culture" => Some(Scopes::Culture),
"owning_unit" => Some(Scopes::Unit),
"deity" | "province_deity" => Some(Scopes::Deity),
"state" => Some(Scopes::State),
"treasure" => Some(Scopes::Treasure),
"siege" => Some(Scopes::Siege),
_ => None,
};
}
None
}